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In this paper the spinless first-order density matrices are examined for states which are solutions 
of the CNDO-hamiltonian for planar molecules. It is shown that the additional constants of mo
tion (CM's) of that hamiltonian permit to find simplifications in calculations of density matrices. 
An actual example is given showing the construction of configurations which are eigen-functions 
of the additional CM's. Two treatments on the H-N= O molecule were performed, with and 
without the factorization due to existing additional CM's, to demonstrate a difference in dimen
sions of the respective CI matrices. 

A many-electron CNDO-hamiltonian for planar molecular systems was studied 1. This "model" 
hamiltonian can be derived from the "accurate" one by neglecting the exchange integrals between 
a and 11: orbitals. This is actually done in the semiempirical CNDO approach2 (strict ZDO appro
ximation) as well as if the Mulliken approximation3 for two-body atomic integrals is adopted. 
It was shown! ,4 that there exist additional constants of motion (hereafter CM's) which permit: a) to 
elucidate some kind of degeneracy observed in eigen-values of the model hamiltonian; b) a further 
factorization in the CI method. These points made possible to carry out the full CI calculations 
on the H 2 0 and H 2 0+ molecules in the framework of the CNDO/2 method. 

In this paper the spinless first-order density matrices are studied for states which 
are solutions of the CNDO hamiltonian for planar molecular systems. Actual 
examples will be given showing the construction of configurations which are eigen
functions of the additional CM's. Exploiting the factorization due to these CM's 
a dimension of CI matrices can considerably be reduced; an application to the RNO 
molecule is presented. 

THEORETICAL 

In finite or infinite basis sets of one-electron functions from which the N-electron 
functions are built up, two subsets can clearly be distinguished, viz. (7- and n-orbitals 
being symmetric and antisymmetric with respect to the reflection in the molecular plane. 

Part II: Theoret. Chim. Acta 22, 142 (1971). 
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This implies that each Slater determinant contains a O'-part and a n-part. Thus the 
CNDO-hamiltonian over the basis of all possible Slater determinants built up from 
a given one-electron functions basis set can be expressed as 

(1) 

where the first two terms are hamiltonians covering all one- and two-particle inter
actions in spaces generated by 0'- and n-orbitals, respectively. The third term, Vun, 

stands for coulombic interaction between 0' and n-subsystems and all its matrix 
elements over the basis of Slater determinants are coulomb integrals of the type 

The accurate formulation of (1) in the language of the second quantization was 
reported previously!. 

The main results reached in ref.! are as follows: A) The hamiltonian (1) possesses two alternative 
sets of the mutually commuting MC's: 

(20, b) 

The operators 5 2 and 5z refer to the square and to the z-component of the total spin, respectively. 
Nn is an operator of the number of n-electrons. It holds N = Nu + Nn, where Nand Nu are 
operators of the total number of electrons and of the number of a electrons. 5~ and 5~ are opera
tors of the total spi n for a electrons, the former refers to its square, the latter to its z-component. 
Operators 5;; and 5~ for n-electrons have the analogous meaning. Let us assume that the hamil
tonian (1) for N electrons is defined over a linear space £ which is represented by all possible 
N-electron Slater determinants. On exploiting the CM's (20), we can divide £ into orthogonal 
and non-interacting subspaces 

(3a) 

where the summation runs over all compatible values of arguments: N n ~ N, ISzl ~ s, Isu 
- Snl ~ S ~ Su + Sn' The expression £(S, Sz, N n, Su' Sn) represents a subspace which is 
at the same time an eigen-space of all operators (2a) with the eigen-values explicitly expressed 
in the argument. 

If the CM's (2b) are employed, a similar splitting of E into orthogonal and non-interacting 
subspaces is obtained 

(3b) 

where similarly as in (3a) the summation runs over all compatible values of arguments. The sub
space F(S~, S;, N n, Su' Sn) is an eigen-space to all operators (2b) with eigen-values explicitly 
expressed in the argument. Both subspaces £C . . ) and F( ... ) are eigen-spaces of Nn, 5~, and 5~ 
operators, but £( ... ) is an eigen-space of 52 and 5; operators, in contrast to F( . . . ), which is an 
eigen-space of 5~ and 5~ operators. It appears more appropriate to consider the hamiltonian (1) 
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2134 Kvasnicka, Vojtik, Rosmus: 

represented by subspaces E( ... ) because of the direct physical meaning of eigen-values 52 and 
5 z , however the adoption of F( ... ) subspaces is advantageous since the basis vectors are more 
simple than those in E(. . . ), as will be shown in the following. 

B) The eigen-values (energies) set of the hamiltonian (1) is identical in the following set of sub-
spaces 

E(x,. y, N., Sa' S.), ISa - s.1 ~ X ~ Sa + s.' IYI ~ x, 

F(x, y, N., S,,' S.), Ixl ~ Sa' IYI ~ s • . 

(4a) 

(4b) 

This implies that for given eigen-valucs of N., 5~, and 5; operators, it is sufficient to choose only 
one of subspaces (4a) or (4b) and to solve the eigen-value problem of the hamiltonian (1) in that 
selected subspace. 

Spin less First Order Density Matrices 

Let us examine general properties of elements of spinless first-order density matrices, 
Y~:'. The superindices A, B denote two normalized N-electron states IIJI A,B)' indices 
p,p' refer to space orbitals. In the second quantization formalism these matrix 
elements can be defined ass 

(5a, b) 

where X;a' Xp'P' ... are creation and annihilation operators corresponding to spin
orbitals Ip) la), Ip') 1f3), .... Using the definition of the N. operator we can write 

[N., Gpp .]_ = {b(p, n) - b(p', n)} Gpp " (6) 

where b( ) = {1 if pEn, 
p, n 0 if p ¢: n. (7) 

Assuming the 11/1 A,B) states are eigen-functions of the N. operator with the eigen
values N~,B, we obtain from (5a-b) and (6) 

(N~ - N~) y~:. = {b(p, n) - b(p', n)} y~: .. (8) 

Thus Eq. (8) gives us 

(9) 

where bij is a Kronecker delta and for t it holds 

f -1 if p E (J' 

t = 0 if p, pi E (J' l + 1 if pEn 

and pi En, 
or p, pi En, 
and pi E (J'. 

(10) 
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Eqs (9) and (10) imply the following statements: A) For N~ = N~ ± 2, N~ ± 3, ... 
the density matrix elements are zero. B) For N~ = N~ ± 1, the density matrix elements 
are generally non-Zero only if pEa, p' En or pEn, p' E a. C) For N~ = N~ the den
sity matrix elements are generally non-zero only if p, p' E a or p, p' En. 

We shall concern only the case C, i.e. only those density matrix elements which 
refer to two states having an equal number of n-electrons. Similarlyl the following 
commutation relation 

(11) 

can be proved, where p,p' E a or p,p' En, and Q is an operator from the series (2a, b). 
Thus, the 1lJ' A,B) states being the eigen-functions either of the (2a) or (2b) set of 
operators, the following factorization of the density matrix elements holds (for 
p, p' E a or p, p' E n) 

(12) 

Here bA,B means that the right side in (12) is generally non-zero only for such two 
IlJ'A,B) states, which have same eigen-values either of the CM's (2a) or of the CM's 
( 2 b) (we assume N~ = N~). Let us now .consider that the 1lJ' A,B) states are eigen
functions of the (2b) CM's set, i.e. they belong to one F(S~, S;, N n, S", S,,) subspace 
from (3b). We shall use for them the designation IlJ'A,B(S~, S;, N n, S", Sn»' By means 
of the operator product S~ S,:!: (and of a normalization constant, compare ref. l) the 
following set of normalized vectors can be constructed. 

(13) 

The commutation relations (11) also hold for Q = S~, S,:!:, which implies the 
density matrix elements are independent on the actual eigen-values of S~, S;. More 
accurately, the density matrix elements 

(14) 

are identical for all S~, S; satisfying IS~I ~ S", IS;I ~ Sn. Hence, the one-to-one 
mapping defined by the S,± S,± product between subspaces (4b) preserves not only 
the matrix elements of the hamiltonian (1) but also the matrix elements (14), similarly 
as in reU The orthonormal functions set (13) can be converted to eigen-functions 
of CM's (2a) by a unitary transformation 

Functions (15) expressed by means of (13) are obtained on the basis of the theory 
of addition of the two angular momenta 6 
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IPA,B(S, Sz,N", S",S,,) = 

== L <S"S"S~S~ISSz) 1 P A,B(S~, S~, N", S", S,,) , (16) 
Sz,Sz 

where Sz = S~ + S~ ,IS" - S"I ~ S ~ S" + S" 

and the factors are Clebsch-Gordan coefficients 7 • Now, let us compute the matrix 
element 

(17) 

Using the unitary, transformation (16), the factorization (12), and the one-to-one 
mapping (14) we obtain 

<PA(S, Sz,N", S", S,,) IGpp.lpB(S, Sz, N", S" , S,,) = 

= <PA(S~, S:, N", S", S,,) IGpp.lpB(S~, S~, N", S", S,,). 

for any IS~I ~ S" and IS~I ~ S". Thus, like in ref. l
, the one-to-one mapping due 

to the transformation (16) between subspaces (4a) preserved the value of the matrix 
element (17). These two one-to-one mapping (14) and (18) imply: a) also IPA,B) 
are eigen-functions of CM's (2a) or CM's (2b), and b) I P A,B) belong to one of sub
spaces (4a) or (4b). Let us assume that the functions I P A,B) are accurate or approxim
ate eigen-functions of the hamiltonian (1) and that they belong to one of subspaces 
(4a) or (4b). Both these functions have their counterparts in each subspace (4a) or 
(4b), i.e. there exist function sets (13) and (15). Accordingly, density matrices 'tAB 

(for N~ = N~) are identical for all functions (13) and (15). Thus, the average value 
of a spinless one-particle observable < PAl n I PB) is identical with all functions 
from (13) and (15). 

APPLICATIONS AND REMARKS 

In the introductory section the additional CM's of the model hamiltonian (1) were defined and the 
consequences of their existence regarding the features of the eigen-value system of this hamilto
nian were examined. Now, we present three examples indicating a possible use of these results 
in actual calculations. 

Example 1. We selected the H-~=Q molecule (planar, Cs symmetry) to demonstrate the 
additional factorization in the full CI CNDO calculation. The system treated has 12 valence 
electrons and the one-electron functions basis contains seven ' CT-type and two n-type orbitals. 
The entries in the first and the second columns of the Table I are the dimensions of full CI pro
blems in a common factorization due to the spatial symmetry (states A' and A") and the spin 
operators S2 and Sz (for fixed Sz = 0). The third and the fourth columns of that Table refer to 
additional factorization due to CM's N", S~ and S~. It can be noticed that the simplification of the 
problem is considerable, which permits, in some cases, to perform even a full CI CNDO calcula
tion4 . Moreover, owing to the degeneracy in the eigen-spectrum of the hamiltonian (1) (section B 
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in Theoretical (4a-b» indicated in the fourth column in Table I (number in parentheses), it is 
enough to solve the CI problem merely in a subspace with the simplest basis functions. 

TABLE I 

Splitting of All Characteristic Subproblems with Sz = 0 which Are Solved in the Full CNDO-CI 
Calculation of H-~=Q Molecule (Cs-symmetry) 

Factorization due to Additional splitting due to 
spatial symmetry and 52 , 5 z the new CM's 

(R, S)a dimension (N", S, Sa' S,,)b dimension 

(A'. 0) 1316 (0,0,0, -) 28 
(2,0,0,0) 588 
(2,0,1,1) 210 
(4,0,0,0) 490 

(A", 0) 1 204 (1,0,1/2 ,1/2) 224 
(3,0,1/2 ,1/2) 980 

(A', 1) 1680 (0,1,1, - ) 21 
(2,1,1,1) (210{ 
(2,1, l, 0) 630 
(2,1,0, l) 196 
(2, l , 2, l) 35 
(4, l, l, 0) 588 

(K',I) l722 (1,1,1/2 ,1/2) (224) 
(1,1,3/ 2 ,1/2) 70 
(3, 1, 1/2 ,1/2 ) 980 
(3, l, 3/2 , 1/2 ) 448 

(A', 2) 490 (2,2,1,1) (210) 
(2,2,2,0) 105 
(2,2,2,1) (35) 
(4,2,2,0) 140 

(A", 2) 560 (1,2,3/2 ,1/2) (70) 
(3, 2, 3/ 2 , 1/2) (448) 
(3, 2, 5/2 , 1/2 ) 42 

(A', 3) 42 (2,3,2,1) (35) 
(4,3,3,0) 7 

(A", 3) 42 (3,3,5/2 ,1/2) (42) 

a R Irreducible representation, S total spin. bN", Sa, S" eigen-values of the additional CM's N". 
5~, 5~ of (2a), S total spin. csubproblems with "( )" may be obtained from the previous ones 
of the same dimension by mapping (see Theoretical). 
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Example 2. This simple example shows how the eigen-functions of CM's (2a) are constructed. 
Let us consider a hypothetical four-electron system with an one-electron orthonormal basis 
containing three O"-type and two 7!"-type orbitals designated as 10"1 )' 10"2)' 10"3 ) and 17!"1)' 17!"2)' 
Using a common notation we obtain the following basis of ten spin orbitals 

(19) 

where e.g. 10"1 ) is a product of a spatial 10"1) and spin Ia: ) parts, similarly 10\) = 10"1)1 fJ), etc. 
Now, the orthonormal basis for subspaces 

F(S~ = x, S; = y, Nt< = 2, Sa = 1, Sf< = 1) , (20) 

(x,y) = (-1, 1), (0,0), 0, - 1), 

can be constructed; Sz = S~ + S; = O. Each subspace from (20) possesses three basis vectors. 

Subspace F(-I, 1,2,1,1): 

(2Ia) 

subspace F(O, 0, 2, 1, 1): 

subspace F(I, -1, 2, 1, 1): 

(2Ic) 

The index (i,j) = 0,2): (1,3) and (2, 3), the expression IO';CTj7!"I7!"2) and the similar ones stand 
for four-electron normalized Slater determinants. By means of the S~ S':. product and of a suitable 
normalization factor we obtain (2Ib) from (2Ia) and (2Ic) from (2Ib). On performing the unitary 
transformation (16), we can pass from the subspaces set (20) to the following subspaces 

E(S = x, Sz = 0, Nt< = 2, Sa = 1, Sf< = 1), X = 0, 1,2. (22) 

The dimension of these subspaces is identical with that of subspaces (20). The necessary Clebsch
Gordan coefficients are listed in Table II. 

TABLE II 

Clebsch-Gordan Coefficients for < 11 xy l to) of Eq. (16) 

x y 

-1 
0 0 

- 1 

0 

3- 1 / 2 
_3- 1 / 2 

3- 1 / 2 

2- 1 / 2 

0 
_2- 1 / 2 

6- 1 / 2 

(!)1/2 
6- 1 / 2 
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Subspace E(O, 0, 2,1,1): 

'P(i,j)(O, 0, 2,1,1» = 1/.j(12){2Iuio'j1i1n2) + 210\0'/'11'2) - IUiCT/'17r2)

- h ai11'Z) - lajUj1'1n2) - 10\Ujn11'2)}' 

subspace E(l, 0, 2,1,1): 

subspace E(2, 0, 2, 1, 1): 

1'P(i,j)(2, 0, 2,1,1» = 6-1/2{lujU}i1nZ) + lajO'j1'11'2) + IUjCT/'ln2) + 
+ IUiCTjn11'2) + ICTju/'ln2) + lajUjn 11'2)}. 

2139 

(23a) 

(23b) 

(23c) 

Here, similarly as in (21a - c), the index has three values: (1,2), (1,3) and (2,3). As shown in the 
section Theoretical the eigen-spectrum of the hamiltonian (1) is identical in subspaces (20) and (22), 
therefore, it is enough to estimate eigen-values in one of them. Since the structure of basis vectors 
is more simple in substaces F( ... ) than in subspaces E(. . . ), it is advantageous to solve the eigen
value problem in one of the F( ... ) subspaces. Furthermore, the eigen-spectrum of the model 
hamiltonian (1) was proved to be identical in the other subspaces 

E(x,y, 2, 1, 1), x = 0, 1,2; IYI ~ x, (24a) 
and 

F(x, y, 2,1,1), Ixl ~ 1, Ixl ~ 1 . (24b) 

Extremely simple basis vectors are those which refer to the so-called maximum multiplicity, i.e. 
in the case (24a) for S = Sz = S" + Sn and in the case (24b) for S~ = S,,' S; = Sn' 

Subspace F(I, 1,2, 1, 1): 

(25a) 
subspace E(2, 2, 2,1,1): 

(25b) 

where the index (i, j) = (1, 2), (1, 3) and (2, 3). From this simple example it becomes evident that 
for a given eigen-values set of CM's N n , S~, and S; the most convenient way to obtain the eigen
spectrum of the hamiltonian (1) is in general that of solving the eigen-problem in the subspace 

F(S", Sn' N n, S", Sn)' 

Example 3. This last example concerns a problem of calculating the mean values of a spinless 
one-particle observable n. In subspaces (24a) and (24b) we construct the state functions I'P A,B) 
and Icp A,B) by forming the linear combinations of basis functions of those subspaces 

I 'PA,B(X, y, 2,1,1» = L ct:fJl 'P(i,j)(x, y, 2, 1, 1», 
(i,j) 

for x = 0, 1, 2 and IYI ~ x 

ICPA,B(X, y, 2, 1, I» = L ct:f)lcp(j,jjCx, y, 2,1,1», 
(j,j) 

(26a) 

(26b) 

for Ixl ~ 1 and IYI ~ 1. Expansion coefficients in (26a) and (26b) are identical. This can be proved 
by the fact that the state functions I'P A,B) and Icp A,B) are solutions of the eigen-value problem 
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of the hamiltonian (1) in subspaces (24a) and (24b). Accordingly, these states are coupled by the 
one-to-one mapping changing the basis functions but not the expansion coefficients. From the 
foregoing section it follows: a) the mean value of an observable n is, in general, non-zero only 
between two statesl'P A,B(" .» or ItP A,B(" .» belonging to the same subspace E( ... ) or F( .. . ) (12), 
and b) the mean values 

('PA(X, y , 2, I, I) Inl'PB(x, v. 2, I, 1», (28a) 

for x = 0, 1,2, and IYI ~ x 

('PA(x, y, 2, I, 1) InltPB(x, Y, 2,1, 1», (28b) 

for Ixl ~ 1 and IYI ~ 1 

are identical for all compatible x and y. This implies the simplest calculation of the expectation 
value of n (analogous to the calculation of the eigen-values of the hamiltonian (1» is that for two 
states ItP A,B) belonging to a subspace of the highest multiplicity, i.e. to F(S", Sn' Nn, S", Sn)' 
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